Evans potentials and the Riesz decomposition
Nakai, Mitsuru
Hiroshima Math. J., Tome 38 (2008) no. 1, p. 455-469 / Harvested from Project Euclid
A superharmonic function $u$ on a parabolic Riemannian manifold $M$ is shown to admit the Riesz decomposition $u=h+(1/c_{d})\int_{M}e(\cdot,y)d\mu(y)$ on $M$ into the harmonic function $h$ on $M$ and the Evans potential of an Evans kernel $e(x,y)$ on $M$ and of the Borel measure $\mu:=-\Delta u\geqq 0$ on $M$ multiplied by a certain constant $1/c_{d}$ if and only if $m(t^{2},u)-2m(t,u)={\cal O}(1)\ (t\rightarrow+\infty)$, where $m(t,u)$ is the spherical mean over the sphere of radius $t$ all induced by the above chosen Evans kernel $e(x,y)$ on $M$.
Publié le : 2008-11-15
Classification:  Evans kernel,  Evans potential,  Riesz decomposition,  31B05,  31B15,  31C12
@article{1233152782,
     author = {Nakai, Mitsuru},
     title = {Evans potentials and the Riesz decomposition},
     journal = {Hiroshima Math. J.},
     volume = {38},
     number = {1},
     year = {2008},
     pages = { 455-469},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1233152782}
}
Nakai, Mitsuru. Evans potentials and the Riesz decomposition. Hiroshima Math. J., Tome 38 (2008) no. 1, pp.  455-469. http://gdmltest.u-ga.fr/item/1233152782/