We prove that a variant of Robinson arithmetic
$\mathsf{Q}$ with nontotal operations
is interpretable in the theory of concatenation
$\mathsf{TC}$ introduced by
A. Grzegorczyk. Since
$\mathsf{Q}$ is known to be interpretable in that nontotal variant,
our result gives a positive answer to the problem whether
$\mathsf{Q}$ is
interpretable in
$\mathsf{TC}$ . An immediate consequence
is essential undecidability of
$\mathsf{TC}$ .
@article{1232375164,
author = {\v Svejdar, V\'\i t\v ezslav},
title = {On Interpretability in the Theory of Concatenation},
journal = {Notre Dame J. Formal Logic},
volume = {50},
number = {1},
year = {2009},
pages = { 87-95},
language = {en},
url = {http://dml.mathdoc.fr/item/1232375164}
}
Švejdar, Vítězslav. On Interpretability in the Theory of Concatenation. Notre Dame J. Formal Logic, Tome 50 (2009) no. 1, pp. 87-95. http://gdmltest.u-ga.fr/item/1232375164/