Continuity Structure of f→∪x∈Iω(x,f) and f→{ω,f:x∈I}
Steele, T. H.
Real Anal. Exchange, Tome 25 (1999) no. 1, p. 421-428 / Harvested from Project Euclid
Let the maps $\Lambda $ and $\Omega $ be defined on $C(I,I)$ so that $ f\longmapsto \Lambda (f)=\cup _{x\in I}\omega (x,f)$ and $f\longmapsto \Omega (f)=\{\omega (x,f):x\in I\}.$ We characterize those functions at which $\Lambda $ is continuous, as well as those functions at which $\Omega $ is continuous when its domain is restricted to those elements of $C(I,I)$ possessing zero topological entropy.
Publié le : 1999-05-15
Classification:  $\omega $-limit set,  topological entropy,  26A18
@article{1231187616,
     author = {Steele, T. H.},
     title = {Continuity Structure of f-[?]<sub>x[?]I</sub>o(x,f) and f-{o,f:x[?]I}},
     journal = {Real Anal. Exchange},
     volume = {25},
     number = {1},
     year = {1999},
     pages = { 421-428},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1231187616}
}
Steele, T. H. Continuity Structure of f→∪x∈Iω(x,f) and f→{ω,f:x∈I}. Real Anal. Exchange, Tome 25 (1999) no. 1, pp.  421-428. http://gdmltest.u-ga.fr/item/1231187616/