Functions Preserving Sequence Spaces
Grinnell, Raymond J.
Real Anal. Exchange, Tome 25 (1999) no. 1, p. 239-256 / Harvested from Project Euclid
Let $A$ and $B$ be sets of real sequences. Let $F(A,B)$ denote the set of functions $f : \R \rightarrow \R$ that preserve $A$ and $B$ in the sense that $(f(a_{n})) \in B$ for all sequences $(a_{n}) \in A.$ These functions are generalizations of convergence preserving functions first introduced by Rado. We establish identities and inclusions for $F(A,B)$ when $A$ and $B$ are $l^{p}$-spaces and other well-known sequence spaces. We also characterize $F(A,B)$ in terms of elementary classes of functions. Our characterizations are motivated by the work of Bors\'{\i}k, \v{C}erve\v{n}ansk\'{y} and \v{S}al\'{a}t.
Publié le : 1999-05-15
Classification:  Function preserving convergence,  infinite series,  sequence space,  26A99,  40A05,  46A45
@article{1231187603,
     author = {Grinnell, Raymond J.},
     title = {Functions Preserving Sequence Spaces},
     journal = {Real Anal. Exchange},
     volume = {25},
     number = {1},
     year = {1999},
     pages = { 239-256},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1231187603}
}
Grinnell, Raymond J. Functions Preserving Sequence Spaces. Real Anal. Exchange, Tome 25 (1999) no. 1, pp.  239-256. http://gdmltest.u-ga.fr/item/1231187603/