Lattices of minimum covolume in Chevalley groups over local fields of positive characteristic
Golsefidy, Alireza Salehi
Duke Math. J., Tome 146 (2009) no. 1, p. 227-251 / Harvested from Project Euclid
In this article, we show that if $\mathbb{G}$ is a simply connected Chevalley group of either classical type of rank bigger than $1$ or type ${\rm E}_6$ and if $q>9$ is a power of a prime number $p>5$ , then $G=\mathbb{G}\big(\mathbb{F}_q((t^{-1}))\big)$ , up to an automorphism, has a unique lattice of minimum covolume, which is $\mathbb{G}(\mathbb{F}_q[t])$
Publié le : 2009-02-01
Classification:  22E40,  11E57
@article{1231170939,
     author = {Golsefidy, Alireza Salehi},
     title = {Lattices of minimum covolume in Chevalley groups over local fields of positive characteristic},
     journal = {Duke Math. J.},
     volume = {146},
     number = {1},
     year = {2009},
     pages = { 227-251},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1231170939}
}
Golsefidy, Alireza Salehi. Lattices of minimum covolume in Chevalley groups over local fields of positive characteristic. Duke Math. J., Tome 146 (2009) no. 1, pp.  227-251. http://gdmltest.u-ga.fr/item/1231170939/