Local variation of Euler products
Montgomery, Hugh L. ; Vaughan, Robert C.
Funct. Approx. Comment. Math., Tome 38 (2008) no. 1, p. 273-288 / Harvested from Project Euclid
We determine how big an Euler product can be at $s_2$, when its size at $s_1$ is known, and apply this via Halász's method to bound the mean value of a multiplicative function in terms of the size of the generating Dirichlet series.
Publié le : 2008-12-15
Classification:  Euler product,  multiplicative function,  11N37,  11M41
@article{1229696576,
     author = {Montgomery, Hugh L. and Vaughan, Robert C.},
     title = {Local variation of Euler products},
     journal = {Funct. Approx. Comment. Math.},
     volume = {38},
     number = {1},
     year = {2008},
     pages = { 273-288},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1229696576}
}
Montgomery, Hugh L.; Vaughan, Robert C. Local variation of Euler products. Funct. Approx. Comment. Math., Tome 38 (2008) no. 1, pp.  273-288. http://gdmltest.u-ga.fr/item/1229696576/