Bernoulli numbers and zeros of $p$-adic $L$-functions
Metsänkylä, Tauno
Funct. Approx. Comment. Math., Tome 38 (2008) no. 1, p. 223-235 / Harvested from Project Euclid
Rational $p$-adic zeros of the Leopoldt-Kubota $p$-adic $L$-functions give rise to certain sequences of generalized Bernoulli numbers tending $p$-adically to zero, and conversely. This relationship takes different forms depending on whether the corresponding Iwasawa $\lambda$-invariant is one or greater than one. To understand the relationship better it is useful to consider approximate zeros of those functions.
Publié le : 2008-12-15
Classification:  Bernoulli numbers,  generalized Bernoulli numbers,  $p$-adic $L$-functions and their zeros,  Iwasawa $\lambda$-invariants,  11B68,  11R23,  11S40
@article{1229696573,
     author = {Mets\"ankyl\"a, Tauno},
     title = {Bernoulli numbers and zeros of $p$-adic $L$-functions},
     journal = {Funct. Approx. Comment. Math.},
     volume = {38},
     number = {1},
     year = {2008},
     pages = { 223-235},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1229696573}
}
Metsänkylä, Tauno. Bernoulli numbers and zeros of $p$-adic $L$-functions. Funct. Approx. Comment. Math., Tome 38 (2008) no. 1, pp.  223-235. http://gdmltest.u-ga.fr/item/1229696573/