Rational $p$-adic zeros of the Leopoldt-Kubota $p$-adic $L$-functions give rise to certain sequences of generalized Bernoulli numbers tending $p$-adically to zero, and conversely. This relationship takes different forms depending on whether the corresponding Iwasawa $\lambda$-invariant is one or greater than one. To understand the relationship better it is useful to consider approximate zeros of those functions.