On the class number of a compositum of real quadratic fields: an approach via circular units
Kučera, Radan
Funct. Approx. Comment. Math., Tome 38 (2008) no. 1, p. 179-189 / Harvested from Project Euclid
For a compositum $k$ of quadratic number fields new explicit units are constructed by taking power-of-two roots of circular units. These units are used to obtain a result concerning the divisibility of the class number of $k$ by a power of $2$.
Publié le : 2008-12-15
Classification:  compositum of real quadratic fields,  class number,  group of circular units,  11R20,  11R27,  11R29
@article{1229696569,
     author = {Ku\v cera, Radan},
     title = {On the class number of a compositum of real quadratic fields: an approach via circular units},
     journal = {Funct. Approx. Comment. Math.},
     volume = {38},
     number = {1},
     year = {2008},
     pages = { 179-189},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1229696569}
}
Kučera, Radan. On the class number of a compositum of real quadratic fields: an approach via circular units. Funct. Approx. Comment. Math., Tome 38 (2008) no. 1, pp.  179-189. http://gdmltest.u-ga.fr/item/1229696569/