Sums of two squares and one biquadrate
Dietmann, Rainer ; Elsholtz, Christian
Funct. Approx. Comment. Math., Tome 38 (2008) no. 1, p. 233-234 / Harvested from Project Euclid
There are no nontrivial integer solutions of $x^2+y^2+z^4=p^2$ for primes $p \equiv 7 \pmod 8$, even though there are no congruence obstructions.
Publié le : 2008-09-15
Classification:  Sums of squares,  Waring's problem for mixed powers,  11E25,  11P05
@article{1229696542,
     author = {Dietmann, Rainer and Elsholtz, Christian},
     title = {Sums of two squares and one biquadrate},
     journal = {Funct. Approx. Comment. Math.},
     volume = {38},
     number = {1},
     year = {2008},
     pages = { 233-234},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1229696542}
}
Dietmann, Rainer; Elsholtz, Christian. Sums of two squares and one biquadrate. Funct. Approx. Comment. Math., Tome 38 (2008) no. 1, pp.  233-234. http://gdmltest.u-ga.fr/item/1229696542/