On summands of general partitions
Nicolas, Jean-Louis ; Sárközy, András
Funct. Approx. Comment. Math., Tome 37 (2007) no. 1, p. 351-359 / Harvested from Project Euclid
It is proved that if $\mathcal{A}$ is a set of positive integers with $1\in\mathcal{A}$ then almost all partitions of $n$ into the elements of $\mathcal{A}$ contain the summand 1.
Publié le : 2007-09-15
Classification:  partitions,  distribution of summands,  11P81
@article{1229619659,
     author = {Nicolas, Jean-Louis and S\'ark\"ozy, Andr\'as},
     title = {On summands of general partitions},
     journal = {Funct. Approx. Comment. Math.},
     volume = {37},
     number = {1},
     year = {2007},
     pages = { 351-359},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1229619659}
}
Nicolas, Jean-Louis; Sárközy, András. On summands of general partitions. Funct. Approx. Comment. Math., Tome 37 (2007) no. 1, pp.  351-359. http://gdmltest.u-ga.fr/item/1229619659/