Nouvelles identités de Davenport
Martin, Bruno
Funct. Approx. Comment. Math., Tome 37 (2007) no. 1, p. 293-327 / Harvested from Project Euclid
We address a problem initiated by Davenport in 1937 ([5] et [6]). Let $z\in\mathbb{C}$. We study the conditions on real $\vartheta$, and its continued fraction expansion, for the validity of the formal identity $$\sum_{m=1}^\infty{\tau_{z+1}(m) \over \pi m}\sin(2 \pi m\vartheta)+\sum_{n=1}^\infty{\tau_z(n) \over \pi n}B(n\vartheta)=0$$ where $B$ denotes the first Bernoulli function and $\tau_z$, the Piltz function of order $z$. We use methods developed by Fouvry, La Bret\`eche and Tenenbaum ([8] et [2]), based on summation over friable integers.
Publié le : 2007-09-15
Classification:  friable integers,  P-summation,  Bernoulli first function,  Piltz functions,  diophantine approximation,  11L03,  11N25
@article{1229619655,
     author = {Martin, Bruno},
     title = {Nouvelles identit\'es de Davenport},
     journal = {Funct. Approx. Comment. Math.},
     volume = {37},
     number = {1},
     year = {2007},
     pages = { 293-327},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/1229619655}
}
Martin, Bruno. Nouvelles identités de Davenport. Funct. Approx. Comment. Math., Tome 37 (2007) no. 1, pp.  293-327. http://gdmltest.u-ga.fr/item/1229619655/