Let $\mathbb{J}_q^k[t]$ denote the additive closure of the set of $k$th powers in the polynomial ring $\mathbb{F}_q[t]$, defined over the finite field $\mathbb{F}_q$ having $q$ elements. We show that when $s\ge k+1$ and $q \ge k^{2k+2}$, then every polynomial in $\mathbb{J}_q^k[t]$ is the sum of at most $s$ $k$th powers
of polynomials from $\mathbb{F}_q[t]$. When $k$ is large and $s \ge (\frac{4}{3}+o(1)) k\log k$, the same conclusion holds without restriction on $q$. Refinements are offered that depend on the characteristic of $\mathbb{F}_q$.