On sum-free subsets of the torus group
Lev, Vsevolod F.
Funct. Approx. Comment. Math., Tome 37 (2007) no. 1, p. 277-283 / Harvested from Project Euclid
Establishing the structure of dense sum-free subsets of the torus group $\mathbb{R}/\mathbb{Z}$, we find an absolute constant $\alpha_0<1/3$ such that for any sum-free subset $A\subseteq\mathbb{R}/\mathbb{Z}$ with the inner measure $\mu(A)>\alpha_0$ there exists an integer $q\ge 1$ so that $$A \subseteq \bigcup_{j=0}^{q-1}[ \frac{j+\mu(A)}q, \frac{j+1-\mu(A)}q ].$$
Publié le : 2007-09-15
Classification:  sum-free sets,  11P70,  11B75
@article{1229619653,
     author = {Lev, Vsevolod F.},
     title = {On sum-free subsets of the torus group},
     journal = {Funct. Approx. Comment. Math.},
     volume = {37},
     number = {1},
     year = {2007},
     pages = { 277-283},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1229619653}
}
Lev, Vsevolod F. On sum-free subsets of the torus group. Funct. Approx. Comment. Math., Tome 37 (2007) no. 1, pp.  277-283. http://gdmltest.u-ga.fr/item/1229619653/