Quadratic Class Numbers Divisible by 3
Heath-Brown, D. Rodger
Funct. Approx. Comment. Math., Tome 37 (2007) no. 1, p. 203-211 / Harvested from Project Euclid
Let $N_+(X)$ denote the number of distinct real quadratic fields $\mathbb{Q}(\sqrt{d})$ with $d\leq X$ for which $3|h(\mathbb{Q}(\sqrt{d}))$. Define $N_-(X)$ similarly for $\mathbb{Q}(\sqrt{-d})$. It is shown that $N_+(X), N_-(X)\gg X^{9/10-\varepsilon}$ for any $\varepsilon>0$. This improves results of Byeon and Koh [2] and of Soundararajan [7], which had exponent $7/8-\varepsilon$.
Publié le : 2007-01-15
Classification:  class number,  quadratic field,  divisible,  density,  11R29,  11R11,  11R47
@article{1229618751,
     author = {Heath-Brown, D. Rodger},
     title = {Quadratic Class Numbers Divisible by 3},
     journal = {Funct. Approx. Comment. Math.},
     volume = {37},
     number = {1},
     year = {2007},
     pages = { 203-211},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1229618751}
}
Heath-Brown, D. Rodger. Quadratic Class Numbers Divisible by 3. Funct. Approx. Comment. Math., Tome 37 (2007) no. 1, pp.  203-211. http://gdmltest.u-ga.fr/item/1229618751/