Sommes d'exponentielles friables d'arguments rationnels
de la Bretèche, Régis ; Tenenbaum, Gérald
Funct. Approx. Comment. Math., Tome 37 (2007) no. 1, p. 31-38 / Harvested from Project Euclid
Let $\mathcal{M}$ denote the class of multiplicative functions with values in the unit disk, and, for $x\geq 1$, $y\geq 1$, let $S(x,y)$ designate the set of $y$-friable positive integers not exceeding $x$. We provide, as $x$ and $y$ tend to infinity in prescribed ranges, upper bounds for exponential sums of the form $$E_f(x,y;\vartheta):=\sum_{n\in S(x,y)}f(n)\hbox{\rm e}^{2\pi i n\vartheta}$$ whenever $f\in \mathcal{M}$ and $\vartheta$ is a rational number with denominator not exceeding a fixed power of $\log x$.
Publié le : 2007-01-15
Classification:  friable integers,  exponential sums,  exponential sums with multiplicative coefficients,  11L03,  11L07,  11N25,  11N37
@article{1229618739,
     author = {de la Bret\`eche, R\'egis and Tenenbaum, G\'erald},
     title = {Sommes d'exponentielles friables d'arguments rationnels},
     journal = {Funct. Approx. Comment. Math.},
     volume = {37},
     number = {1},
     year = {2007},
     pages = { 31-38},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/1229618739}
}
de la Bretèche, Régis; Tenenbaum, Gérald. Sommes d'exponentielles friables d'arguments rationnels. Funct. Approx. Comment. Math., Tome 37 (2007) no. 1, pp.  31-38. http://gdmltest.u-ga.fr/item/1229618739/