For Schrödinger maps from $\mathbb{R}^2\times\mathbb{R}^+$ to the $2$ -sphere $\mathbb{S}^2$ , it is not known if finite energy solutions can form singularities (blow up) in finite time. We consider equivariant solutions with energy near the energy of the two-parameter family of equivariant harmonic maps. We prove that if the topological degree of the map is at least four, blowup does not occur, and global solutions converge (in a dispersive sense, i.e., scatter) to a fixed harmonic map as time tends to infinity. The proof uses, among other things, a time-dependent splitting of the solution, the generalized Hasimoto transform, and Strichartz (dispersive) estimates for a certain two space--dimensional linear Schrödinger equation whose potential has critical power spatial singularity and decay. Along the way, we establish an energy-space local well-posedness result for which the existence time is determined by the length scale of a nearby harmonic map