Majorizing measures and proportional subsets of bounded orthonormal systems
Rev. Mat. Iberoamericana, Tome 24 (2008) no. 2, p. 1075-1095 / Harvested from Project Euclid
In this article we prove that for any orthonormal system $(\varphi_j)_{j=1}^n \subset L_2$ that is bounded in $L_{\infty}$, and any $1 < k < n$, there exists a subset $I$ of cardinality greater than $n-k$ such that on $\mathrm{span}\{\varphi_i\}_{i \in I}$, the $L_1$ norm and the $L_2$ norm are equivalent up to a factor $\mu (\log \mu)^{5/2}$, where $\mu = \sqrt{n/k} \sqrt{\log k}$. The proof is based on a new estimate of the supremum of an empirical process on the unit ball of a Banach space with a good modulus of convexity, via the use of majorizing measures.
Publié le : 2008-04-15
Classification:  empirical process,  majorizing measure,  orthonormal system,  46B07,  46B09,  42A05,  42A61
@article{1228834305,
     author = {Gu\'edon
,  
Olivier and Mendelson
,  
Shahar and Pajor
,  
Alain and Tomczak-Jaegermann
,  
Nicole},
     title = {Majorizing measures and proportional subsets of bounded orthonormal systems},
     journal = {Rev. Mat. Iberoamericana},
     volume = {24},
     number = {2},
     year = {2008},
     pages = { 1075-1095},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1228834305}
}
Guédon
,  
Olivier; Mendelson
,  
Shahar; Pajor
,  
Alain; Tomczak-Jaegermann
,  
Nicole. Majorizing measures and proportional subsets of bounded orthonormal systems. Rev. Mat. Iberoamericana, Tome 24 (2008) no. 2, pp.  1075-1095. http://gdmltest.u-ga.fr/item/1228834305/