Harnack inequality for hypoelliptic ultraparabolic equations with a singular lower order term
Rev. Mat. Iberoamericana, Tome 24 (2008) no. 2, p. 1011-1046 / Harvested from Project Euclid
We prove a Harnack inequality for the positive solutions of ultraparabolic equations of the type $$ \mathcal {L}_0 u + \mathcal {V} u = 0, $$ where $\mathcal {L}_0$ is a linear second order hypoelliptic operator and $\mathcal {V}$ belongs to a class of functions of Stummel-Kato type. We also obtain the existence of a Green function and an uniqueness result for the Cauchy-Dirichlet problem.
Publié le : 2008-04-15
Classification:  hypoelliptic operator,  Schrödinger equation,  Harnack inequality,  Green function,  35K70,  35J10,  35K20,  32A37,  35B65
@article{1228834303,
     author = {Polidoro
,  
Sergio and Ragusa
,  
Maria Alessandra},
     title = {Harnack inequality for hypoelliptic ultraparabolic equations 
with a singular lower order term},
     journal = {Rev. Mat. Iberoamericana},
     volume = {24},
     number = {2},
     year = {2008},
     pages = { 1011-1046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1228834303}
}
Polidoro
,  
Sergio; Ragusa
,  
Maria Alessandra. Harnack inequality for hypoelliptic ultraparabolic equations 
with a singular lower order term. Rev. Mat. Iberoamericana, Tome 24 (2008) no. 2, pp.  1011-1046. http://gdmltest.u-ga.fr/item/1228834303/