Almost classical solutions of Hamilton-Jacobi equations
Rev. Mat. Iberoamericana, Tome 24 (2008) no. 2, p. 989-1010 / Harvested from Project Euclid
We study the existence of everywhere differentiable functions which are almost everywhere solutions of quite general Hamilton-Jacobi equations on open subsets of $\mathbb R^d$ or on $d$-dimensional manifolds whenever $d\geq 2$. In particular, when $M$ is a Riemannian manifold, we prove the existence of a differentiable function $u$ on $M$ which satisfies the Eikonal equation $\Vert \nabla u(x) \Vert_{x}=1$ almost everywhere on $M$.
Publié le : 2008-04-15
Classification:  Hamilton-Jacobi equations,  eikonal equation on manifolds,  almost everywhere solutions,  26B05,  35B65,  58J32
@article{1228834302,
     author = {Deville
,  
Robert and Jaramillo
,  
Jes\'us A.},
     title = {Almost classical solutions of Hamilton-Jacobi equations},
     journal = {Rev. Mat. Iberoamericana},
     volume = {24},
     number = {2},
     year = {2008},
     pages = { 989-1010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1228834302}
}
Deville
,  
Robert; Jaramillo
,  
Jesús A. Almost classical solutions of Hamilton-Jacobi equations. Rev. Mat. Iberoamericana, Tome 24 (2008) no. 2, pp.  989-1010. http://gdmltest.u-ga.fr/item/1228834302/