Homology exponents for $H$-spaces
Rev. Mat. Iberoamericana, Tome 24 (2008) no. 2, p. 963-980 / Harvested from Project Euclid
We say that a space $X$ admits a \emph{homology exponent} if there exists an exponent for the torsion subgroup of $H^*(X;\mathbb Z)$. Our main result states that if an $H$-space of finite type admits a homology exponent, then either it is, up to $2$-completion, a product of spaces of the form $B\mathbb Z/2^r$, $S^1$, $\mathbb C P^\infty$, and $K(\mathbb Z,3)$, or it has infinitely many non-trivial homotopy groups and $k$-invariants. Relying on recent advances in the theory of $H$-spaces, we then show that simply connected $H$-spaces whose mod $2$ cohomology is finitely generated as an algebra over the Steenrod algebra do not have homology exponents, except products of mod $2$ finite $H$-spaces with copies of $\mathbb C P^\infty$ and $K(\mathbb Z,3)$.
Publié le : 2008-04-15
Classification:  homology exponent,  $H$-space,  loop space,  Steenrod algebra,  57T25,  55S45,  55P20,  55S10,  55T10,  55T20
@article{1228834300,
     author = {Cl\'ement
,  
Alain and Scherer
,  
J\'er\^ome},
     title = {Homology exponents for $H$-spaces},
     journal = {Rev. Mat. Iberoamericana},
     volume = {24},
     number = {2},
     year = {2008},
     pages = { 963-980},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1228834300}
}
Clément
,  
Alain; Scherer
,  
Jérôme. Homology exponents for $H$-spaces. Rev. Mat. Iberoamericana, Tome 24 (2008) no. 2, pp.  963-980. http://gdmltest.u-ga.fr/item/1228834300/