Asymptotic study of planar canard solutions
Forget, Thomas
Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, p. 809-824 / Harvested from Project Euclid
We are interested in the asymptotic study of canard solutions in real singularly perturbed first order ODE of the form $\varepsilon u'=\Psi(x,u,a,\varepsilon)$, where $\varepsilon>0$ is a small parameter, and $a\in\mathbb R$ is a real control parameter. An operator $\Xi_\eta$ was defined to prove the existence of canard solutions. This demonstration allows us to conjecture the existence of a generalized asymptotic expansion in fractional powers of $\varepsilon$ for those solutions. In this note, we propose an algorithm that computes such an asymptotic expansions for the canard solution. Furthermore, those asymptotic expansions remain uniformly valid.
Publié le : 2008-11-15
Classification:  Asymptotic expansions,  Asymptotics,  Singular perturbation,  Turning point theory,  34E05,  34E10,  34E20
@article{1228486409,
     author = {Forget, Thomas},
     title = {Asymptotic study of planar canard solutions},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {15},
     number = {1},
     year = {2008},
     pages = { 809-824},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1228486409}
}
Forget, Thomas. Asymptotic study of planar canard solutions. Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, pp.  809-824. http://gdmltest.u-ga.fr/item/1228486409/