Let $G$ be a finite subgroup of the mapping class group of genus $\sigma$, which acts on a compact Riemann surface of genus $\sigma$. In this paper, we introduce a new method to determine the rotation angle of an element $g\in G$ around the fixed points of $g$. Our main result is Theorem 3.2.
Publié le : 2008-10-15
Classification:
Riemann surface,
mapping class group,
finite group,
elliptic operator,
58C30,
30F99
@article{1228226751,
author = {Tsuboi, Kenji},
title = {On the rotation angles of a finite subgroup of a mapping class group},
journal = {Proc. Japan Acad. Ser. A Math. Sci.},
volume = {84},
number = {1},
year = {2008},
pages = { 184-185},
language = {en},
url = {http://dml.mathdoc.fr/item/1228226751}
}
Tsuboi, Kenji. On the rotation angles of a finite subgroup of a mapping class group. Proc. Japan Acad. Ser. A Math. Sci., Tome 84 (2008) no. 1, pp. 184-185. http://gdmltest.u-ga.fr/item/1228226751/