On symplectic quandles
Navas, Esteban Adam ; Nelson, Sam
Osaka J. Math., Tome 45 (2008) no. 1, p. 973-985 / Harvested from Project Euclid
We study the structure of symplectic quandles, quandles which are also $R$-modules equipped with an antisymmetric bilinear form. We show that every finite dimensional symplectic quandle over a finite field $\mathbb{F}$ or arbitrary field $\mathbb{F}$ of characteristic other than 2 is a disjoint union of a trivial quandle and a connected quandle. We use the module structure of a symplectic quandle over a finite ring to refine and strengthen the quandle counting invariant.
Publié le : 2008-12-15
Classification:  176D99,  57M27,  55M25
@article{1227708829,
     author = {Navas, Esteban Adam and Nelson, Sam},
     title = {On symplectic quandles},
     journal = {Osaka J. Math.},
     volume = {45},
     number = {1},
     year = {2008},
     pages = { 973-985},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1227708829}
}
Navas, Esteban Adam; Nelson, Sam. On symplectic quandles. Osaka J. Math., Tome 45 (2008) no. 1, pp.  973-985. http://gdmltest.u-ga.fr/item/1227708829/