Codazzi fields on surfaces immersed in Euclidean 4-space
Gutiérrez Núñez, J.M. ; Romero Fuster, M.C. ; Sánchez-Bringas, F.
Osaka J. Math., Tome 45 (2008) no. 1, p. 877-894 / Harvested from Project Euclid
Consider a Riemannian vector bundle of rank 1 defined by a normal vector field $\nu$ on a surface $M$ in $\mathbb{R}^{4}$. Let $\mathrm{II}_{\nu}$ be the second fundamental form with respect to $\nu$ which determines a configuration of lines of curvature. In this article, we obtain conditions on $\nu$ to isometrically immerse the surface $M$ with $\mathrm{II}_{\nu}$ as a second fundamental form into $\mathbb{R}^{3}$. Geometric restrictions on $M$ are determined by these conditions. As a consequence, we analyze the extension of Loewner's conjecture, on the index of umbilic points of surfaces in $\mathbb{R}^{3}$, to special configurations on surfaces in $\mathbb{R}^{4}$.
Publié le : 2008-12-15
Classification:  53A05,  57R25
@article{1227708823,
     author = {Guti\'errez N\'u\~nez, J.M. and Romero Fuster, M.C. and S\'anchez-Bringas, F.},
     title = {Codazzi fields on surfaces immersed in Euclidean 4-space},
     journal = {Osaka J. Math.},
     volume = {45},
     number = {1},
     year = {2008},
     pages = { 877-894},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1227708823}
}
Gutiérrez Núñez, J.M.; Romero Fuster, M.C.; Sánchez-Bringas, F. Codazzi fields on surfaces immersed in Euclidean 4-space. Osaka J. Math., Tome 45 (2008) no. 1, pp.  877-894. http://gdmltest.u-ga.fr/item/1227708823/