Gibbs fragmentation trees
McCullagh, Peter ; Pitman, Jim ; Winkel, Matthias
Bernoulli, Tome 14 (2008) no. 1, p. 988-1002 / Harvested from Project Euclid
We study fragmentation trees of Gibbs type. In the binary case, we identify the most general Gibbs-type fragmentation tree with Aldous’ beta-splitting model, which has an extended parameter range β>−2 with respect to the beta(β+1, β+1) probability distributions on which it is based. In the multifurcating case, we show that Gibbs fragmentation trees are associated with the two-parameter Poisson–Dirichlet models for exchangeable random partitions of ℕ, with an extended parameter range 0≤α≤1, θ≥−2α and α<0, θ=−mα, m∈ℕ.
Publié le : 2008-11-15
Classification:  Aldous’ beta-splitting model,  Gibbs distribution,  Markov branching model,  Poisson–Dirichlet distribution
@article{1225980568,
     author = {McCullagh, Peter and Pitman, Jim and Winkel, Matthias},
     title = {Gibbs fragmentation trees},
     journal = {Bernoulli},
     volume = {14},
     number = {1},
     year = {2008},
     pages = { 988-1002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1225980568}
}
McCullagh, Peter; Pitman, Jim; Winkel, Matthias. Gibbs fragmentation trees. Bernoulli, Tome 14 (2008) no. 1, pp.  988-1002. http://gdmltest.u-ga.fr/item/1225980568/