K3 surfaces and sphere packings
SHIODA, Tetsuji
J. Math. Soc. Japan, Tome 60 (2008) no. 1, p. 1083-1105 / Harvested from Project Euclid
We determine the structure of the Mordell-Weil lattice, Néron-Severi lattice and the lattice of transcendental cycles for certain elliptic K3 surfaces. We find that such questions from algebraic geometry are closely related to the sphere packing problem, and a key ingredient is the use of the sphere packing bounds in establishing geometric results.
Publié le : 2008-10-15
Classification:  K3 surface,  Mordell-Weil lattice,  Neron-Séveri lattice,  14J27,  14J28,  14H40
@article{1225894034,
     author = {SHIODA, Tetsuji},
     title = {K3 surfaces and sphere packings},
     journal = {J. Math. Soc. Japan},
     volume = {60},
     number = {1},
     year = {2008},
     pages = { 1083-1105},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1225894034}
}
SHIODA, Tetsuji. K3 surfaces and sphere packings. J. Math. Soc. Japan, Tome 60 (2008) no. 1, pp.  1083-1105. http://gdmltest.u-ga.fr/item/1225894034/