Intersection of harmonics and Capelli identities for symmetric pairs
LEE, Soo Teck ; NISHIYAMA, Kyo ; WACHI, Akihito
J. Math. Soc. Japan, Tome 60 (2008) no. 1, p. 955-982 / Harvested from Project Euclid
We consider a see-saw pair consisting of a Hermitian symmetric pair $(G_{\bm{R}}, K_{\bm{R}})$ and a compact symmetric pair $(M_{\bm{R}}, H_{\bm{R}})$ , where $(G_{\bm{R}}, H_{\bm{R}})$ and $(K_{\bm{R}}, M_{\bm{R}})$ form a real reductive dual pair in a large symplectic group. In this setting, we get Capelli identities which explicitly represent certain $K_{\bm{C}}$ -invariant elements in $U(\mathfrak{g}_{\bm{C}})$ in terms of $H_{\bm{C}}$ -invariant elements in $U(\mathfrak{m}_{\bm{C}})$ . The corresponding $H_{\bm{C}}$ -invariant elements are called Capelli elements. ¶ We also give a decomposition of the intersection of ${\it O}_{2n}$ -harmonics and ${\it Sp}_{2n}$ -harmonics as a module of ${\it GL}_n = {\it O}_{2n} \cap {\it Sp}_{2n}$ , and construct a basis for the ${\it GL}_n$ highest weight vectors. This intersection is in the kernel of our Capelli elements.
Publié le : 2008-10-15
Classification:  harmonics,  Capelli identity,  Weil representation,  invariant theory,  17B35,  22E46,  16S32,  15A15
@article{1225894029,
     author = {LEE, Soo Teck and NISHIYAMA, Kyo and WACHI, Akihito},
     title = {Intersection of harmonics and Capelli identities for symmetric pairs},
     journal = {J. Math. Soc. Japan},
     volume = {60},
     number = {1},
     year = {2008},
     pages = { 955-982},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1225894029}
}
LEE, Soo Teck; NISHIYAMA, Kyo; WACHI, Akihito. Intersection of harmonics and Capelli identities for symmetric pairs. J. Math. Soc. Japan, Tome 60 (2008) no. 1, pp.  955-982. http://gdmltest.u-ga.fr/item/1225894029/