We show that the symmetric track groups $\operatorname{Sym}_\Box(n)$, which are extensions of the symmetric groups $\operatorname{Sym}(n)$
associated to the second Stiefel-Whitney class, act as crossed
modules on the secondary homotopy groups of a pointed
space.
@article{1225893951,
author = {Baues, Hans-Joachim and Muro, Fernando},
title = {The symmetric action on secondary homotopy groups},
journal = {Bull. Belg. Math. Soc. Simon Stevin},
volume = {15},
number = {1},
year = {2008},
pages = { 733-768},
language = {en},
url = {http://dml.mathdoc.fr/item/1225893951}
}
Baues, Hans-Joachim; Muro, Fernando. The symmetric action on secondary homotopy groups. Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, pp. 733-768. http://gdmltest.u-ga.fr/item/1225893951/