Let $g:B\to \mathbb C^1$ be a holomorphic map of the
unit ball $B$. We give a complete picture regarding the
boundedness and compactness of the following two integral
operators
$$
T_gf(z)=\int_0^1f(tz)\Re g(tz)\frac{dt}{t}\text{ and } L_gf(z)= \int_0^1
\Re f(tz) g(tz)\frac{dt}{t},\quad z\in B,
$$
between different weighted Bergman spaces.
@article{1225893947,
author = {Li, Songxiao and Stevi\'c, Stevo},
title = {Riemann-Stieltjes operators between different weighted Bergman spaces},
journal = {Bull. Belg. Math. Soc. Simon Stevin},
volume = {15},
number = {1},
year = {2008},
pages = { 677-686},
language = {en},
url = {http://dml.mathdoc.fr/item/1225893947}
}
Li, Songxiao; Stević, Stevo. Riemann-Stieltjes operators between different weighted Bergman spaces. Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, pp. 677-686. http://gdmltest.u-ga.fr/item/1225893947/