About spaces of $\omega_1$-$\omega_2$-ultradifferentiable functions
Schmets, Jean ; Valdivia, Manuel
Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, p. 645-662 / Harvested from Project Euclid
Let $\Omega_1$ and $\Omega_2$ be non empty open subsets of $\mathbb R^r$ and $\mathbb R^s$ respectively and let $\omega_1$ and $\omega_2$ be weights. We introduce the spaces of ultradifferentiable functions $\mathcal{E}_{(\omega_1,\omega_2)}(\Omega_1 \times \Omega_2)$, $\mathcal{D}_{(\omega_1,\omega_2)}(\Omega_1 \times \Omega_2)$, $\mathcal{E}_{\{\omega_1,\omega_2\}}(\Omega_1 \times \Omega_2)$ and $\mathcal{D}_{\{\omega_1,\omega_2\}}(\Omega_1 \times \Omega_2)$, study their locally convex properties, examine the structure of their elements and also consider their links with the tensor products $\mathcal{E}_{*}(\Omega_1) \otimes \mathcal{E}_{*}(\Omega_2)$ and $\mathcal{D}_{*}(\Omega_1) \otimes \mathcal{D}_{*}(\Omega_2)$ endowed with the $\varepsilon$-, $\pi$- or $i$-topologies. This leads to kernel theorems.
Publié le : 2008-05-15
Classification:  ultradifferentiable functions,  Beurling type,  Roumieu type,  nuclearity,  tensor product,  kernel theorem,  46A11,  46A32,  46E10,  46F05
@article{1225893945,
     author = {Schmets, Jean and Valdivia, Manuel},
     title = {About spaces of $\omega\_1$-$\omega\_2$-ultradifferentiable functions},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {15},
     number = {1},
     year = {2008},
     pages = { 645-662},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1225893945}
}
Schmets, Jean; Valdivia, Manuel. About spaces of $\omega_1$-$\omega_2$-ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, pp.  645-662. http://gdmltest.u-ga.fr/item/1225893945/