Under some conditions on a Hilbert space $H$ of analytic functions on the open unit disc we will show that for every nontrivial invariant subspace $\mathcal{M}$ of $H$, there exists a unique nonconstant inner function $\varphi$ such that $\mathcal{M}=\varphi H$. This extends the Beurling’s Theorem.
@article{1225463780,
author = {Yousefi, Bahmann and Hesameddini, Esmaiel},
title = {Extension of the Beurling's Theorem},
journal = {Proc. Japan Acad. Ser. A Math. Sci.},
volume = {84},
number = {1},
year = {2008},
pages = { 167-169},
language = {en},
url = {http://dml.mathdoc.fr/item/1225463780}
}
Yousefi, Bahmann; Hesameddini, Esmaiel. Extension of the Beurling’s Theorem. Proc. Japan Acad. Ser. A Math. Sci., Tome 84 (2008) no. 1, pp. 167-169. http://gdmltest.u-ga.fr/item/1225463780/