Codimension two nonsingular subvarieties of quadrics: scrolls and classification in degree $d\leq 10$
CATALDO, Mark Andrea A. de
J. Math. Soc. Japan, Tome 50 (1998) no. 4, p. 879-902 / Harvested from Project Euclid
Let $X$ be a codimension two nonsingular subvariety of a nonsingular quadric $L^2$ of dimension $n\geq 5$ . We classify such subvarieties when they are scrolls. We also classify them when the degree $d\leq 10$ . Both results were known when $n=4$ .
Publié le : 1998-10-15
Classification:  14Mxx,  14Jxx
@article{1225113600,
     author = {CATALDO, Mark Andrea A. de},
     title = {Codimension two nonsingular subvarieties of quadrics: scrolls and classification in degree $d\leq 10$},
     journal = {J. Math. Soc. Japan},
     volume = {50},
     number = {4},
     year = {1998},
     pages = { 879-902},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1225113600}
}
CATALDO, Mark Andrea A. de. Codimension two nonsingular subvarieties of quadrics: scrolls and classification in degree $d\leq 10$. J. Math. Soc. Japan, Tome 50 (1998) no. 4, pp.  879-902. http://gdmltest.u-ga.fr/item/1225113600/