Asymptotic Completeness for Relativistic Kinetic Equations with Short-range Interaction Forces
Ha, Seung-Yeal ; Kim, Yong Duck ; Lee, Ho ; Noh, Se Eun
Methods Appl. Anal., Tome 14 (2007) no. 1, p. 251-262 / Harvested from Project Euclid
We present an $L^1$-asymptotic completeness results for relativistic kinetic equations with short range interaction forces. We show that the uniform phase space-time bound for nonlinear terms to the relativistic nonlinear kinetic equations yields the asymptotic completeness of the relativistic kinetic equations. For this space-time bound, we employ dispersive estimates and explicit construction of a Lyapunov functional.
Publié le : 2007-09-15
Classification:  Asymptotic completeness,  relativistic kinetic equation,  the Vlasov-Yukawa equation,  the Klein-Gordon equation,  35L45,  70K20,  70K40
@article{1224877826,
     author = {Ha, Seung-Yeal and Kim, Yong Duck and Lee, Ho and Noh, Se Eun},
     title = {Asymptotic Completeness for Relativistic Kinetic Equations with Short-range Interaction Forces},
     journal = {Methods Appl. Anal.},
     volume = {14},
     number = {1},
     year = {2007},
     pages = { 251-262},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1224877826}
}
Ha, Seung-Yeal; Kim, Yong Duck; Lee, Ho; Noh, Se Eun. Asymptotic Completeness for Relativistic Kinetic Equations with Short-range Interaction Forces. Methods Appl. Anal., Tome 14 (2007) no. 1, pp.  251-262. http://gdmltest.u-ga.fr/item/1224877826/