A new characterization of the generalized Hermite linear form
Ghressi, A. ; Khériji, L.
Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, p. 561-567 / Harvested from Project Euclid
We show that the Generalized Hermite linear form $\mathcal{H}(\mu)$, which is symmetric $D$-semiclassical of class one, is the unique $\mathcal{D}_{\theta}$-Appell classical where $\mathcal{D}_{\theta}$ is the Dunkl operator.
Publié le : 2008-05-15
Classification:  semiclassical orthogonal polynomials,  Dunkl operator,  Appell orthogonal polynomials,  42C05,  33C45
@article{1222783100,
     author = {Ghressi, A. and Kh\'eriji, L.},
     title = {A new characterization
of the generalized Hermite linear form},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {15},
     number = {1},
     year = {2008},
     pages = { 561-567},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1222783100}
}
Ghressi, A.; Khériji, L. A new characterization
of the generalized Hermite linear form. Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, pp.  561-567. http://gdmltest.u-ga.fr/item/1222783100/