Fix a poset $\mathcal P$ and a natural number $n$.
For various commutative local rings $\Lambda$, each of
Loewy length $n$, consider the category
$\textrm{sub}_\Lambda\mathcal P$ of $\Lambda$-linear submodule
representations of $\mathcal P$.
We give a criterion for when the underlying translation quiver
of a connected component of the Auslander-Reiten
quiver of $\sub_\Lambda\mathcal P$ is independent of the choice
of the base ring $\Lambda$.
If $\mathcal P$ is the one-point poset and
$\Lambda=\mathbb Z/p^n$, then $\textrm{sub}_\Lambda\mathcal P$
consists of all pairs $(B;A)$ where $B$ is a finite abelian $p^n$-bounded group
and $A\subset B$ a subgroup.
We can respond to a remark by M.~C.~R. Butler
concerning the first occurence of parametrized
families of such subgroup embeddings.
@article{1222783098,
author = {Schmidmeier, Markus},
title = {Systems of Submodules and an Isomorphism Problem for Auslander-Reiten Quivers},
journal = {Bull. Belg. Math. Soc. Simon Stevin},
volume = {15},
number = {1},
year = {2008},
pages = { 523-546},
language = {en},
url = {http://dml.mathdoc.fr/item/1222783098}
}
Schmidmeier, Markus. Systems of Submodules and an Isomorphism Problem for Auslander-Reiten Quivers. Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, pp. 523-546. http://gdmltest.u-ga.fr/item/1222783098/