Systems of Submodules and an Isomorphism Problem for Auslander-Reiten Quivers
Schmidmeier, Markus
Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, p. 523-546 / Harvested from Project Euclid
Fix a poset $\mathcal P$ and a natural number $n$. For various commutative local rings $\Lambda$, each of Loewy length $n$, consider the category $\textrm{sub}_\Lambda\mathcal P$ of $\Lambda$-linear submodule representations of $\mathcal P$. We give a criterion for when the underlying translation quiver of a connected component of the Auslander-Reiten quiver of $\sub_\Lambda\mathcal P$ is independent of the choice of the base ring $\Lambda$. If $\mathcal P$ is the one-point poset and $\Lambda=\mathbb Z/p^n$, then $\textrm{sub}_\Lambda\mathcal P$ consists of all pairs $(B;A)$ where $B$ is a finite abelian $p^n$-bounded group and $A\subset B$ a subgroup. We can respond to a remark by M.~C.~R. Butler concerning the first occurence of parametrized families of such subgroup embeddings.
Publié le : 2008-05-15
Classification:  Auslander-Reiten quiver,  poset representations,  uniserial rings,  Birkhoff problem,  chains of subgroups,  relative homological algebra,  16G70,  18G20,  20E15
@article{1222783098,
     author = {Schmidmeier, Markus},
     title = {Systems of Submodules and an Isomorphism Problem for Auslander-Reiten Quivers},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {15},
     number = {1},
     year = {2008},
     pages = { 523-546},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1222783098}
}
Schmidmeier, Markus. Systems of Submodules and an Isomorphism Problem for Auslander-Reiten Quivers. Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, pp.  523-546. http://gdmltest.u-ga.fr/item/1222783098/