On the finite time blow-up of the Euler-Poisson equations in $\Bbb R^{2}$
Chae, Donghao ; Tadmor, Eitan
Commun. Math. Sci., Tome 6 (2008) no. 1, p. 785-789 / Harvested from Project Euclid
We prove the finite time blow-up for $C^1$ solutions of the attractive Euler-Poisson equations in $\Bbb R^{2}$, $n\geq1$, with and without background state, for a large set of ’generic’ initial data. We characterize this supercritical set by tracing the spectral dynamics of the deformation and vorticity tensors.
Publié le : 2008-09-15
Classification:  Euler-Poisson equations,  finite time blow-up,  35Q35,  35B30
@article{1222716956,
     author = {Chae, Donghao and Tadmor, Eitan},
     title = {On the finite time blow-up of the Euler-Poisson equations in $\Bbb R^{2}$},
     journal = {Commun. Math. Sci.},
     volume = {6},
     number = {1},
     year = {2008},
     pages = { 785-789},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1222716956}
}
Chae, Donghao; Tadmor, Eitan. On the finite time blow-up of the Euler-Poisson equations in $\Bbb R^{2}$. Commun. Math. Sci., Tome 6 (2008) no. 1, pp.  785-789. http://gdmltest.u-ga.fr/item/1222716956/