Existence of axially symmetric solutions to the Vlasov-Poisson system depending on Jacobi's integral
Schulze, Achim
Commun. Math. Sci., Tome 6 (2008) no. 1, p. 711-727 / Harvested from Project Euclid
We prove the existence of axially symmetric solutions to the Vlasov–Poisson system in a rotating setting for sufficiently small angular velocity. The constructed steady states depend on Jacobi’s integral and the proof relies on an implicit function theorem for operators.
Publié le : 2008-09-15
Classification:  Vlasov–Poisson system,  galactic dynamics,  stationary solutions,  35A05,  85A05
@article{1222716952,
     author = {Schulze, Achim},
     title = {Existence of axially symmetric solutions to the Vlasov-Poisson system
					depending on Jacobi's integral},
     journal = {Commun. Math. Sci.},
     volume = {6},
     number = {1},
     year = {2008},
     pages = { 711-727},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1222716952}
}
Schulze, Achim. Existence of axially symmetric solutions to the Vlasov-Poisson system
					depending on Jacobi's integral. Commun. Math. Sci., Tome 6 (2008) no. 1, pp.  711-727. http://gdmltest.u-ga.fr/item/1222716952/