On suprema of Lévy processes and application in risk theory
Song, Renming ; Vondraček, Zoran
Ann. Inst. H. Poincaré Probab. Statist., Tome 44 (2008) no. 2, p. 977-986 / Harvested from Project Euclid
Let X̂=C−Y where Y is a general one-dimensional Lévy process and C an independent subordinator. Consider the times when a new supremum of X̂ is reached by a jump of the subordinator C. We give a necessary and sufficient condition in order for such times to be discrete. When this is the case and X̂ drifts to −∞, we decompose the absolute supremum of X̂ at these times, and derive a Pollaczek–Hinchin-type formula for the distribution function of the supremum.
Publié le : 2008-10-15
Classification:  Lévy process,  Subordinator,  Fluctuation theory,  Extrema,  Risk theory,  60G51,  60G17,  60J75,  91B30
@article{1222261921,
     author = {Song, Renming and Vondra\v cek, Zoran},
     title = {On suprema of L\'evy processes and application in risk theory},
     journal = {Ann. Inst. H. Poincar\'e Probab. Statist.},
     volume = {44},
     number = {2},
     year = {2008},
     pages = { 977-986},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1222261921}
}
Song, Renming; Vondraček, Zoran. On suprema of Lévy processes and application in risk theory. Ann. Inst. H. Poincaré Probab. Statist., Tome 44 (2008) no. 2, pp.  977-986. http://gdmltest.u-ga.fr/item/1222261921/