Change-point estimation from indirect observations. 2. Adaptation
Goldenshluger, A. ; Juditsky, A. ; Tsybakov, A. ; Zeevi, A.
Ann. Inst. H. Poincaré Probab. Statist., Tome 44 (2008) no. 2, p. 819-836 / Harvested from Project Euclid
We focus on the problem of adaptive estimation of signal singularities from indirect and noisy observations. A typical example of such a singularity is a discontinuity (change-point) of the signal or of its derivative. We develop a change-point estimator which adapts to the unknown smoothness of a nuisance deterministic component and to an unknown jump amplitude. We show that the proposed estimator attains optimal adaptive rates of convergence. A simulation study demonstrates reasonable practical behavior of the proposed adaptive estimates.
Publié le : 2008-10-15
Classification:  Singularities,  Change-point,  Estimation,  Detection,  Minimax risk,  Adaption,  Optimal rates,  62G05,  62G20
@article{1222261914,
     author = {Goldenshluger, A. and Juditsky, A. and Tsybakov, A. and Zeevi, A.},
     title = {Change-point estimation from indirect observations. 2. Adaptation},
     journal = {Ann. Inst. H. Poincar\'e Probab. Statist.},
     volume = {44},
     number = {2},
     year = {2008},
     pages = { 819-836},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1222261914}
}
Goldenshluger, A.; Juditsky, A.; Tsybakov, A.; Zeevi, A. Change-point estimation from indirect observations. 2. Adaptation. Ann. Inst. H. Poincaré Probab. Statist., Tome 44 (2008) no. 2, pp.  819-836. http://gdmltest.u-ga.fr/item/1222261914/