Hyperbolic lengths of some filling geodesics on Riemann surfaces with punctures
Zhang, Chaohui
Osaka J. Math., Tome 45 (2008) no. 1, p. 773-787 / Harvested from Project Euclid
Let $\tilde{S}$ be a Riemann surface of type $(p,n)$ with $3p-3+n>0$ and $n\geq 1$. In this paper, we give a quantitative common lower bound for the hyperbolic lengths of all filling geodesics on $\tilde{S}$ generated by two parabolic elements in the fundamental group $\pi_{1}(\tilde{S},a)$.
Publié le : 2008-09-15
Classification:  32G15,  30F60
@article{1221656652,
     author = {Zhang, Chaohui},
     title = {Hyperbolic lengths of some filling geodesics on Riemann surfaces with punctures},
     journal = {Osaka J. Math.},
     volume = {45},
     number = {1},
     year = {2008},
     pages = { 773-787},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1221656652}
}
Zhang, Chaohui. Hyperbolic lengths of some filling geodesics on Riemann surfaces with punctures. Osaka J. Math., Tome 45 (2008) no. 1, pp.  773-787. http://gdmltest.u-ga.fr/item/1221656652/