Uniqueness for the Brezis-Nirenberg problem on compact Einstein manifolds
Huang, Guangyue ; Chen, Wenyi
Osaka J. Math., Tome 45 (2008) no. 1, p. 609-614 / Harvested from Project Euclid
We consider the positive solution of the following semi-linear elliptic equation on the compact Einstein manifolds $M^{n}$ with positive scalar curvature $R_{0}$ \begin{equation*} \Delta_{0}u-\lambda u+f(u)u^{(n+2)/(n-2)}=0, \end{equation*} where $\Delta_{0}$ is the Laplace-Beltrami operator on $M^{n}$. We prove that for $0<\lambda\leq (n-2)R_{0}/(4(n-1))$ and $f'(u)\leq 0$, and at least one of two inequalities is strict, the only positive solution to the above equation is constant. The method here is intrinsic.
Publié le : 2008-09-15
Classification:  35J60,  35C21
@article{1221656643,
     author = {Huang, Guangyue and Chen, Wenyi},
     title = {Uniqueness for the Brezis-Nirenberg problem on compact Einstein manifolds},
     journal = {Osaka J. Math.},
     volume = {45},
     number = {1},
     year = {2008},
     pages = { 609-614},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1221656643}
}
Huang, Guangyue; Chen, Wenyi. Uniqueness for the Brezis-Nirenberg problem on compact Einstein manifolds. Osaka J. Math., Tome 45 (2008) no. 1, pp.  609-614. http://gdmltest.u-ga.fr/item/1221656643/