Continuum tree asymptotics of discrete fragmentations and applications to phylogenetic models
Haas, Bénédicte ; Miermont, Grégory ; Pitman, Jim ; Winkel, Matthias
Ann. Probab., Tome 36 (2008) no. 1, p. 1790-1837 / Harvested from Project Euclid
Given any regularly varying dislocation measure, we identify a natural self-similar fragmentation tree as scaling limit of discrete fragmentation trees with unit edge lengths. As an application, we obtain continuum random tree limits of Aldous’s beta-splitting models and Ford’s alpha models for phylogenetic trees. This confirms in a strong way that the whole trees grow at the same speed as the mean height of a randomly chosen leaf.
Publié le : 2008-09-15
Classification:  Markov branching model,  self-similar fragmentation,  continuum random tree,  ℝ-tree,  phylogenetic tree,  60J80
@article{1221138767,
     author = {Haas, B\'en\'edicte and Miermont, Gr\'egory and Pitman, Jim and Winkel, Matthias},
     title = {Continuum tree asymptotics of discrete fragmentations and applications to phylogenetic models},
     journal = {Ann. Probab.},
     volume = {36},
     number = {1},
     year = {2008},
     pages = { 1790-1837},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1221138767}
}
Haas, Bénédicte; Miermont, Grégory; Pitman, Jim; Winkel, Matthias. Continuum tree asymptotics of discrete fragmentations and applications to phylogenetic models. Ann. Probab., Tome 36 (2008) no. 1, pp.  1790-1837. http://gdmltest.u-ga.fr/item/1221138767/