Compact Toeplitz operators on parabolic Bergman spaces
Nishio, Masaharu ; Suzuki, Noriaki ; Yamada, Masahiro
Hiroshima Math. J., Tome 38 (2008) no. 1, p. 177-192 / Harvested from Project Euclid
Parabolic Bergman space $\berg[p]$ is a Banach space of all $p$-th integrable solutions of a parabolic equation $(\partial/\partial t + (-\Delta)^{\alpha})u = 0$ on the upper half space, where $0<\alpha\leq1$ and $1\leq p<\infty$. In this note, we consider the Toeplitz operator from $\berg[p]$ to $\berg[q]$ where $p\leq q$, and discuss the condition that it be compact.
Publié le : 2008-07-15
Classification:  Carleson measure,  Toeplitz operator,  heat equation,  parabolic operator of fractional order,  Bergman space,  compact operator,  35K05,  31B10,  26D10
@article{1220619455,
     author = {Nishio, Masaharu and Suzuki, Noriaki and Yamada, Masahiro},
     title = {Compact Toeplitz operators on parabolic Bergman spaces},
     journal = {Hiroshima Math. J.},
     volume = {38},
     number = {1},
     year = {2008},
     pages = { 177-192},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1220619455}
}
Nishio, Masaharu; Suzuki, Noriaki; Yamada, Masahiro. Compact Toeplitz operators on parabolic Bergman spaces. Hiroshima Math. J., Tome 38 (2008) no. 1, pp.  177-192. http://gdmltest.u-ga.fr/item/1220619455/