Gibbs Sampling, Exponential Families and Orthogonal Polynomials
Diaconis, Persi ; Khare, Kshitij ; Saloff-Coste, Laurent
Statist. Sci., Tome 23 (2008) no. 1, p. 151-178 / Harvested from Project Euclid
We give families of examples where sharp rates of convergence to stationarity of the widely used Gibbs sampler are available. The examples involve standard exponential families and their conjugate priors. In each case, the transition operator is explicitly diagonalizable with classical orthogonal polynomials as eigenfunctions.
Publié le : 2008-05-15
Classification:  Gibbs sampler,  running time analyses,  exponential families,  conjugate priors,  location families,  orthogonal polynomials,  singular value decomposition
@article{1219339107,
     author = {Diaconis, Persi and Khare, Kshitij and Saloff-Coste, Laurent},
     title = {Gibbs Sampling, Exponential Families and Orthogonal Polynomials},
     journal = {Statist. Sci.},
     volume = {23},
     number = {1},
     year = {2008},
     pages = { 151-178},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1219339107}
}
Diaconis, Persi; Khare, Kshitij; Saloff-Coste, Laurent. Gibbs Sampling, Exponential Families and Orthogonal Polynomials. Statist. Sci., Tome 23 (2008) no. 1, pp.  151-178. http://gdmltest.u-ga.fr/item/1219339107/