On the NLS dynamics for infinite energy vortex configurations on the plane
Rev. Mat. Iberoamericana, Tome 24 (2008) no. 2, p. 671-702 / Harvested from Project Euclid
We derive the asymptotical dynamical law for Ginzburg-Landau vortices in the plane under the Schrödinger dynamics, as the Ginz\-burg-Landau parameter goes to zero. The limiting law is the well-known point-vortex system. This result extends to the whole plane previous results of [Colliander, J.E. and Jerrard, R.L.: Vortex dynamics for the Ginzburg-Landau-Schrödinger equation. Internat. Math. Res. Notices 1998, no. 7, 333-358; Lin, F.-H. and Xin, J.\,X.: On the incompressible fluid limit and the vortex motion law of the nonlinear Schr\"{o}dinger equation. Comm. Math. Phys. 200 (1999), 249-274] established for bounded domains, and holds for arbitrary degree at infinity. When this degree is non-zero, the total Ginzburg-Landau energy is infinite.
Publié le : 2008-04-15
Classification:  vortex dynamics,  NLS equation,  superfluids,  35B20,  35B40,  35Q55,  82D50
@article{1218475359,
     author = {Bethuel
,  
Fabrice and Jerrard
,  
Robert  L. and Smets
,  
Didier},
     title = {On the NLS dynamics for infinite energy vortex configurations on the plane},
     journal = {Rev. Mat. Iberoamericana},
     volume = {24},
     number = {2},
     year = {2008},
     pages = { 671-702},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1218475359}
}
Bethuel
,  
Fabrice; Jerrard
,  
Robert  L.; Smets
,  
Didier. On the NLS dynamics for infinite energy vortex configurations on the plane. Rev. Mat. Iberoamericana, Tome 24 (2008) no. 2, pp.  671-702. http://gdmltest.u-ga.fr/item/1218475359/