Quasilinear equations with natural growth
Rev. Mat. Iberoamericana, Tome 24 (2008) no. 2, p. 597-616 / Harvested from Project Euclid
We study the existence of positive solution $w\in H_0^1(\Omega)$ of the quasilinear equation $-\Delta w+ g(w)|\nabla w|^2=a(x)$, $x\in \Omega$, where $\Omega$ is a bounded domain in $\mathbb R^N$, $0\leq a\in L^\infty (\Omega )$ and $g$ is a nonnegative continuous function on $(0,+\infty)$ which may have a singularity at zero.
Publié le : 2008-04-15
Classification:  quasilinear elliptic equations,  critical growth,  singular nonlinearity,  35J60,  35J65,  35B45
@article{1218475355,
     author = {Arcoya
,  
David and Mart\'\i nez-Aparicio
,  
Pedro J.},
     title = {Quasilinear equations with natural growth},
     journal = {Rev. Mat. Iberoamericana},
     volume = {24},
     number = {2},
     year = {2008},
     pages = { 597-616},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1218475355}
}
Arcoya
,  
David; Martínez-Aparicio
,  
Pedro J. Quasilinear equations with natural growth. Rev. Mat. Iberoamericana, Tome 24 (2008) no. 2, pp.  597-616. http://gdmltest.u-ga.fr/item/1218475355/