Geometric optics with critical vanishing viscosity for one-dimensional semilinear initial value problems
Rev. Mat. Iberoamericana, Tome 24 (2008) no. 2, p. 549-566 / Harvested from Project Euclid
We study the propagation of high frequency oscillations for one dimensional semi-linear hyperbolic systems with small parabolic perturbations. We obtain a new degenerate parabolic system for the profile, and valid an asymptotic development in the spirit of Joly, Métivier and Rauch.
Publié le : 2008-04-15
Classification:  nonlinear geometric optics,  small viscosity,  profile,  phase,  non stationary phase,  maximum principle,  energy estimates,  interpolation,  weakly coupled parabolic systems,  35K45,  35L60,  35B25
@article{1218475353,
     author = {Junca
,  
St\'ephane},
     title = {Geometric optics with critical vanishing viscosity for one-dimensional semilinear initial value problems},
     journal = {Rev. Mat. Iberoamericana},
     volume = {24},
     number = {2},
     year = {2008},
     pages = { 549-566},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1218475353}
}
Junca
,  
Stéphane. Geometric optics with critical vanishing viscosity for one-dimensional semilinear initial value problems. Rev. Mat. Iberoamericana, Tome 24 (2008) no. 2, pp.  549-566. http://gdmltest.u-ga.fr/item/1218475353/