Soluble products of connected subgroups
Rev. Mat. Iberoamericana, Tome 24 (2008) no. 2, p. 433-461 / Harvested from Project Euclid
The main result in the paper states the following: For a finite group $G=AB$, which is the product of the soluble subgroups $A$ and $B$, if $\langle a,b \rangle$ is a metanilpotent group for all $a\in A$ and $b\in B$, then the factor groups $\langle a,b \rangle F(G)/F(G)$ are nilpotent, $F(G)$ denoting the Fitting subgroup of $G$. A particular generalization of this result and some consequences are also obtained. For instance, such a group $G$ is proved to be soluble of nilpotent length at most $l+1$, assuming that the factors $A$ and $B$ have nilpotent length at most $l$. Also for any finite soluble group $G$ and $k\geq 1$, an element $g\in G$ is contained in the preimage of the hypercenter of $G/F_{k-1}(G)$, where $F_{k-1}(G)$ denotes the ($k-1$)th term of the Fitting series of $G$, if and only if the subgroups $\langle g,h\rangle$ have nilpotent length at most $k$ for all $h\in G$.
Publié le : 2008-04-15
Classification:  finite groups,  soluble groups,  $2$-generated subgroups,  product of subgroups,  metanilpotent groups,  Fitting series,  20D10,  20D40
@article{1218475349,
     author = {G\'allego
,  
M. Pilar and Hauck
,  
Peter and P\'erez-Ramos
,  
M. Dolores},
     title = {Soluble products of connected subgroups},
     journal = {Rev. Mat. Iberoamericana},
     volume = {24},
     number = {2},
     year = {2008},
     pages = { 433-461},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1218475349}
}
Gállego
,  
M. Pilar; Hauck
,  
Peter; Pérez-Ramos
,  
M. Dolores. Soluble products of connected subgroups. Rev. Mat. Iberoamericana, Tome 24 (2008) no. 2, pp.  433-461. http://gdmltest.u-ga.fr/item/1218475349/