On the number of ovals of a symmetry of a compact Riemann surface
Rev. Mat. Iberoamericana, Tome 24 (2008) no. 2, p. 391-405 / Harvested from Project Euclid
Let $X$ be a symmetric compact Riemann surface whose full group of conformal automorphisms is cyclic. We derive a formula for counting the number of ovals of the symmetries of $X$ in terms of few data of the monodromy of the covering $X\rightarrow X/G$, where $G=\mbox{\rm Aut\/}^\pm X$ is the full group of conformal and anticonformal automorphisms of $X$.
Publié le : 2008-04-15
Classification:  Riemann surface,  symmetries,  ovals,  30F,  14H
@article{1218475347,
     author = {Bujalance
,  
Emilio and Cirre
,  
Francisco Javier and Gamboa
,  
Jos\'e Manuel and Gromadzki
,  
Grzegorz},
     title = {On the number of ovals of a symmetry of a compact Riemann surface},
     journal = {Rev. Mat. Iberoamericana},
     volume = {24},
     number = {2},
     year = {2008},
     pages = { 391-405},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1218475347}
}
Bujalance
,  
Emilio; Cirre
,  
Francisco Javier; Gamboa
,  
José Manuel; Gromadzki
,  
Grzegorz. On the number of ovals of a symmetry of a compact Riemann surface. Rev. Mat. Iberoamericana, Tome 24 (2008) no. 2, pp.  391-405. http://gdmltest.u-ga.fr/item/1218475347/