Transformations between surfaces in $\mathbb{R}^4$ with flat normal and/or tangent bundles
Montesinos-Amilibia , Angel
Rev. Mat. Iberoamericana, Tome 24 (2008) no. 2, p. 71-90 / Harvested from Project Euclid
We exhibit several transformations of surfaces $M$ in $\mathbb{R}^4$: a transformation of flat surfaces that gives surfaces with flat normal bundle (semiumbilical surfaces); and its inverse that from a semiumbilical surface obtains a flat surface; then a one-parameter family of transformations $f$ on flat semiumbilical immersed surfaces (FSIS), such that $df(T_pM)$ is totally orthogonal to $T_pM,$ and that give FSIS. This family satisfies a Bianchi type of permutability property.
Publié le : 2008-04-15
Classification:  flat, semiumbilical surfaces in $\mathbb{R}^4$,  Bianchi permutability,  Bäcklund transformation,  evolute,  53A05
@article{1216247096,
     author = {Montesinos-Amilibia ,  Angel},
     title = {Transformations between surfaces in $\mathbb{R}^4$ with
 flat normal and/or tangent bundles},
     journal = {Rev. Mat. Iberoamericana},
     volume = {24},
     number = {2},
     year = {2008},
     pages = { 71-90},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1216247096}
}
Montesinos-Amilibia ,  Angel. Transformations between surfaces in $\mathbb{R}^4$ with
 flat normal and/or tangent bundles. Rev. Mat. Iberoamericana, Tome 24 (2008) no. 2, pp.  71-90. http://gdmltest.u-ga.fr/item/1216247096/